
TLBr: A Computer Architecture Project

Kathryn Baldauf
keb3448

Rushi Shah
rs49532

Karthik Velayutham
kv6735

I. INTRO & MOTIVATION

Traditional prefetching into a cache hides the latency of
an expensive memory access. The TLB is a specialized cache
specifically for storing virtual to physical address mappings in
virtual memory systems. However, prior literature and mod-
ern implementations have not sufficiently applied traditional
prefetching techniques to the TLB. So this project aims to
improve program performance by prefetching future address
translations into the TLB before they are needed.

We conducted a headroom experiment over no TLB
prefetching to empirically motivate our efforts and found
promising results. For example, as demonstrated in the at-
tached chart, in the GAP 22 benchmarks, we find that a
theoretical ideal TLB prefetcher would provide an average of
37.3% IPC speedup over no TLB prefetching.

Fig. 1. Ideal headroom for GAP-22 benchmarks

A. Implementation Motivation

The research question we aim to address in this paper is
whether previous intuition and methods used for cache line
prefetching can be used to prefetch TLB translations. There are
two key differences between cache line prefetching and TLB
prefetching: the latency being hidden and the granularity of
prefetches. Cache line prefetchers attempt to hide the latency
of going to memory for data at a specific physical address,
whereas the goal of TLB prefetching is to hide the latency
of walking the page table for a translation from a virtual
address to physical address. Additionally, the granularity at
which prefetches cover the address space of a system is
significantly larger for a TLB prefetcher than a cache line
prefetcher. These key differences motivate the TLB prefetchers
implemented in this paper. Section IV will discuss more on

how page granularity affects the design and considerations of
a prefetcher.

II. IMPLEMENTATIONS

A. State of the Art - “Delta”

The previous state of the art is Distance Prefetching pro-
posed in [1]. Distance prefetching works by correlating the
distance of the current page from the previous page to a list
of S slots, where each slot contains a correlated delta. These
correlated deltas are then added to the current page to create
predicted addresses. Our implementation of DP, which we
refer to as “Delta”, trains the predictor on the total access
stream.

B. Global Address Correlation - “GAC”

Traditional Global Address Correlation is well-explored
in prefetching literature. We implemented the same Global
Address Correlation (“GAC”) idea for TLB prefetching with
a few key differences. For example, rather than correlating
cache lines, we operate at the page granularity. So each page
maintains a set of S correlated pages trained on the total access
stream. This set is managed on an LRU basis, and experiments
were conducted with S = 2. When that page is seen again, its
correlated set of pages is prefetched.

C. PC Localized Address Correlation - “PLAC”

We modified our GAC implementation slightly to localize
based on the PC of the load instruction. So, for every unique
PC we store a copy of the metadata we mentioned in the
previous GAC section. Note that this is a standard approach
in traditional prefetching literature.

D. Footprinting Page Correlation

As a motivating example for this approach, consider PageA
that holds DataStructure1 in the first half of the page and
holds DataStructure2 in the second half of the page. When-
ever the code accesses DataStructure1 it will access PageB
next. Similarly, whenever the code accesses DataStructure2
it will access PageC next. Simply correlating PageA with
only one of PageB , PageC would be insufficient. Instead,
we want to capture access information at a granularity that is
finer than page granularity.

Thus, we correlate every page with a list of footprints in
a metadata structure. These footprints represent the access
pattern within a page. In turn, these footprints correlate to
a page expected to follow that access stream. Footprints are
snapshotted into the metadata structure on every access. Every
access also updates the current footprint for the current page.
Prefetches are issued every time the current footprint in a page

is sufficiently similar to a snapshotted footprint for that page.
This condition is checked on every access. The metadata stored
is outlined in the attached schematic.

Fig. 2. Footprint Page Correlation Data Structure

A page’s footprint is represented as a bitset where each
address in the page corresponds to one bit in the bitset. If
this is too fine of a granularity, it can be made coarser by
chunking up the addresses in a page, for example at the cache
line granularity.

In the motivating example, the next time an access stream
starts accessing DataStructure1, the prefetcher will recog-
nize the footprint as accessing primarily the first half of the
page and issue a prefetch for PageB .

In our implementation, we somehow introduced an unidenti-
fiable bug that stops the prefetcher from issuing any prefetches.
Because we were not able to identify the bug in the implemen-
tation, we were not able to collect results for this prefetcher.

E. Offset History

This prefetcher, shown in Figure 3 attempts to solve the
same motivating example described above for Footprinting
Page Correlation.

Offset history works by correlating a history of address
access offsets within a page to a delta. This delta represents
the predicted distance from the current page to prefetch a TLB
translation. The offsets are not localized by page in the history
vector. Instead, they are localized by PC to capture code flow
of the program without enforcing specific page addresses.

This prefetcher addresses one of the short comings of the
footprint based solution: the loss of ordering information. The
offset history vector maintains the order in which a stream
accesses data in pages.

We ran preliminary tests to determine the results of Offset
History using SPEC 2006 and determined that it performs
worse than PLAC and the baseline no prefetcher for many
benchmarks, despite maintaining a high accuracy. Thus, we
decided not to focus on this prefetcher for the remainder of
this work.

III. EXPERIMENTATION & RESULTS

A. Headroom Study

The first experiment we conducted was a comprehensive
headroom study in ChampSim to motivate further experimen-

PC1

[offsetn, offsetn-1, …, offset1, offset0]: Δ1

Fig. 3. Offset History Prefetcher data structure

tation. We are presenting the results of the experiments on
four benchmark suites: SPEC 2006, SPEC 2017, GAP 22, and
Cloudsuite. We simulated an ideal TLB prefetcher by config-
uring ChampSim to treat any TLB access as zero-latency. We
present the results of the speedup of IPC when compared to
no prefetching and full-latency translation accesses.

GAP 22 had the most promising and realistic headroom
results. Other than the tc benchmark, every benchmark in the
GAP 22 suite had at least ˜9% ideal speedup, with an average
of 37.3% speedup.

SPEC 2006 also had promising headroom results, particu-
larly the cactus benchmark which had an ideal speedup of
˜80%. The average ideal speedup was a respectable 6.4%.

SPEC 2017, however, looked underwhelming. It only had
an average ideal speedup of 1.08% and only one benchmark
managed to break past a 10% speedup over no prefetching. The
Cloudsuite benchmark suite was a set of multicore programs.
The initial headroom results looked unbelievably promising,
with an average ideal speedup of over 260%. However, no
prefetcher was able to capture this insane headroom. We think
further thought process needs to go into multicore benchmarks
before results can be convincing. SPEC 2017 and Cloudsuite
headroom graphs are reserved for the appendix.

B. General Results

A variety of workloads were run on ChampSim to determine
the performance of our TLB prefetcher. In this case, our
prefetchers were run SPEC 2006, GAP-22, and Cloudsuite
workloads and were then analyzed based on IPC, coverage,
redundancy, and prefetcher accuracy.

When we compare the overall prefetcher accuracy for SPEC
2006 (in Figure 11, Appendix) we observe that PLAC, for
the most part, is able to dominate the other prefetchers, with
an average accuracy of ∼30% compared to Delta’s 16%.
However, it’s important to note that prefetcher accuracy is
not representative of performance since there could be a high
number of redundant prefetches (or not as many prefetches
being issued.) We see similar results for GAP-22, but since
this data is not significant, we will not include it.

Looking at prefetcher redundancy for SPEC 2006 (in Figure
12, Appendix), we clearly see that both GAC and PLAC issue

Fig. 4. Ideal headroom for SPEC 2006 benchmarks

Fig. 5. Ideal headroom for GAP-22 benchmarks

Fig. 6. SPEC 2006 IPC improvement over Delta

a significantly larger number of prefetches compared to the
delta prefetcher. On average, PLAC issues prefetches at 79%
redudancy, where as Delta has a redundancy rate of 63%. The
main conclusion here is that our prefetcher is not issuing any
useful requests to memory to save memory latency. When
we take a look at the GAP 22 benchmarks (in figure 17,
Appendix), we see a similar result of low redundancy for Delta
(at around 29%) compared to GAC and PLAC, which had 49%
and 52% redundancy respectively.

Since performance can be mostly quantified with the IPC,
we want to focus on the IPC improvement over Delta for SPEC
2006 benchmarks and GAP-22 (figure 6 and 8). We observe
that for both GAC and PLAC, we have an average speed up
over Delta at around 1.5% (IPC improvement). An important
takeaway from this data is that we observe significant gains
in performance namely in benchmarks GemsFDTD and mcf.
For GAP 22 (figure 8), we see that we see roughly 2-3% IPC
increase over Delta for both GAC and PLAC. Although the
improvements are marginal, we observe visible gains that give
further insights on the benefits of adding PC-granularity.

Next we took a look at how much headroom our prefetchers
captured in comparison to the Delta prefetcher. In this case,
we specifically focused only on PLAC since it was our most
promising prefetcher. We see that in the results for both
GAP 22 and SPEC 2006 (figure 7, and 16 in the appendix),
there is only marginal improvement compared to the Delta
prefetcher. This can be attributed to the low coverage of GAC

and PLAC, covering 15% and 16% of standard misses on
the SPEC 2006 workloads. We observe that Delta’s ability
to cover compulsory misses allows it to have a much higher
coverage for this suite. We discuss later on how we can
increase coverage. On the other hand, we observe that for
the GAP-22 workloads (figure 19, appendix), PLAC has a
coverage of 34% compared to 28% from Delta. One reason
could be that the graph workloads could have more address
correlation than anticipated. That, coupled with larger graph
sizes, could amplify the effect of increased coverage.

Fig. 7. Headroom captured for GAP-22

Fig. 8. GAP-22 IPC speedup

C. Divergence Study

As mentioned in section II, our implementations for Delta,
GAC, and PLAC use a slot size of S = 2. The previous state
of the art, [1], found this slot size to be the optimal number of
correlated deltas to a tag. To evaluate the amount of pages a
given page can be correlated with in a program, we conducted
a divergence study. This study simply counts the number of
pages that immediately follow a page during execution. We
ran this experiment for both GAP 22 and SPEC 2006. The
results of our experiment are in figure 9 and 10. The y axis
represents the average number of correlated pages for 99% of
pages in the indicated benchmark. Figure 9 shows that 99%
of pages in Gap-22 have an average of 6 correlated pages.
Figure 10 shows that 99% of pages in SPEC 2006 have an
average of around 9 correlated pages. This figure also shows
the high variability that exists between certain benchmarks.
These graphs indicate that our prefetchers may benefit from
increasing the slot size S. This may allow for higher predictor
accuracy and improved performance.

IV. TAKEAWAYS

In this section, we provide high level takeaways from our
study of TLB prefetchers.

A. Page Granularity

A key consideration when designing prefetchers is how data
is laid out within a page. Given the size of a page, typically
4096 bytes, it may contain data for various different data
structures. This can be seen in figure 11. How these data
structures are allocated within the page is a function of the

Fig. 9. Gap-22 Divergence Results

memory allocation of the system and cannot be predicted for
general programs, as programmers may allocate memory in
non optimal ways or the OS may attempt to optimize memory
layout. The TLB translation that is needed next may be tied
to the specific data addresses accessed within a given period
of time in a page. For example, if a program is accessing the
tree data structure in the beginning of the page represented
in figure 11, it may next need the TLB translation for page
B. However, if the program is accessing the linked list data
structure in the lower end of the addresses of the figure, it may
next need the TLB translation for page C. Given this insight
and the results of the divergence study discussed in section II,
we recommend that future TLB prefetchers target divergence

Benchmark

A
ve

ra
ge

 C
or

re
la

te
d

Pa
ge

s
fo

r 9
9%

 P
ag

es

0

10

20

30

40

50

asta
r_3

13B

bwave
s_

1861B

bzip
2_2

81B

ca
ctu

sA
DM_1

495B

ca
lcu

lix
_3

812B

gcc
_5

6B

GemsF
DTD_7

16B

gobmk_
135B

gromacs
_1

B

h264ref_3
51B

hmmer_5
46B

lbm_1
004B

lesli
e3d_1

186B

lib
quantum_1

735B

mcf_
250B

milc
_7

44B

omnetpp_3
40B

perlb
ench

_1
35B

so
plex_

217B

sp
hinx3

_2
520B

tonto_2
834B

wrf_
1212B

xa
lancb

mk_
768B

ze
usm

p_6
00B

Ave
rage

Divergence Results for SPEC 2006

Fig. 10. SPEC 2006 Divergence Results

by using accesses within a page to capture the code flow of a
program to determine page translations to prefetch.

This discussion leads to the next difficulty with page gran-
ularity prefetching for the TLB. In cache line prefetches, the
triggering event is simply an access to a cache line. This
is effective because when accessing a given cache line, the
program will either reaccess that cache line or immediately
move onto another cache line. However, at the page granular-
ity, the system doesn’t know when the program will switch
from accessing a given page to another. The system may
make several accesses to a given page before switching, or
may only make one. This again, is a result of the data layout
within a page. This is an issue because, as discussed above, the
prefetcher should maintain information on what addresses are
accessed within a page. With this, there is no intuitive time
in which the prefetcher has built up enough information on
what data structures are being accessed within a page before
issuing an educated prefetch. Therefore, more experimentation
and research is necessary to determine what the optimal time to
issue a TLB prefetch is. Our current work prefetches on every
access to a page. However, we believe this can be improved
to avoid TLB pollution and pressure.

Page

data next data next data nextbool int

Fig. 11. Data layout in a page

B. PC information

Given the previous discussion about the consideration of
page granularity in the design of TLB prefetchers, information
on the code flow of a program is necessary in order to
gain information about how a given page is currently being
accessed. One way to capture the code flow of a program is

by using the program counter (PC) to localize a given stream
of addresses. This is supported by our results for GAC and
PLAC, where PLAC outperforms GAC, shown in figure 8.

V. FUTURE WORK

1) Higher-degree prefetchers: As seen in the analysis of
our results, low coverage and high redundancy were problems
that drastically reduced the effectiveness of GAC and PLAC.
By adjusting the degree of the prefetchers, effectively issuing
more prefetches, we can attempt to reduce redundancy, and in
turn, hope to increase coverage.

2) Hybrid prefetchers: Another potential idea would be to
make use of a hybrid prefetcher to get the best of both worlds.
A potential idea could be a PC/Delta prefetcher that could
adjust according to the workload. This would improve the
coverage as well as attempt to deliver the the IPC gains of
PLAC.

APPENDIX

See attached graphs.

ACKNOWLEDGMENT

We would like to thank Calvin Lin, Akanksha Jain, and
Matthew Pabst for their guidance and assistance.

REFERENCES

[1] Kandiraju, G.b., and A. Sivasubramaniam. “Going the Distance for
TLB Prefetching: an Application-Driven Study.” Proceedings 29th
Annual International Symposium on Computer Architecture, 2002,
doi:10.1109/isca.2002.1003578.

Fig. 12. Ideal headroom for SPEC 2017 benchmarks

Fig. 13. Ideal headroom for Cloudsuite benchmarks

Fig. 14. Prefetcher accuracy for SPEC 2006 benchmarks

Fig. 15. Prefetcher redundancy for SPEC 2006 benchmarks

Fig. 16. Prefetcher redundancy for GAP-22 benchmarks

Fig. 17. Headroom captured for SPEC 2006 benchmarks

Fig. 18. Prefetcher coverage for SPEC 2006 benchmarks

Fig. 19. Prefetcher coverage for GAP-22 benchmarks

