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Ahh, the Fibonacci numbers. What mathemetician doesn’t love them? Well, in Week
06 of CIS194, some interesting implementations were discussed. My favorite (that I never
actually had encountered before), was in order to get the n’th number, you raise a two by
two matrix to the n’th power. Let’s take a look at my implementation:

1 The Matrix

First off, you need to be able to represent matrices. I decided to use a tuple of tuples for the
two by two matrix.

data Matrix = Matrix ( ( Integer , Integer ) ,
( Integer , Integer ) )

I also wanted to be able to print them nicely in the terminal, so I whipped up a quick
show function. I could have derived it, but in my opinion, this makes it look slightly nicer.

instance Show Matrix where
show ( Matrix ( ( a , b ) , ( c , d ) ) ) =

” [ ” ++ show a ++ ” , ” ++ show b ++ ” ] ”
” [ ” ++ show c ++ ” , ” ++ show d ++ ” ] ”

And now let’s instantiate a matrix!

m : : Matrix
m = Matrix ( ( 1 , 1 ) , (1 , 0 ) )

To check that it works, let’s print out the matrix in ghci:

> m
[ 1 , 1 ]
[ 1 , 0 ]

2 Multiplying Matrices

So that’s great, but these matrices don’t really do much. We need to be able to raise each
matrix to a specific power, but who knows how to do that? I sure don’t. With that being
said, I do know how to multiply two 2x2 matrices together! Let’s define a function (*)
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that takes two 2x2 matrices and returns a matrix representing the multiplication of the two
arguments. This multiplication function is a part of the Num typeclass, so in essence, we are
making Matrix an instance of Num.

instance Num Matrix where
(∗ ) ( Matrix ( ( a , b ) , ( c , d ) ) ) ( Matrix ( ( e , f ) , ( g , h ) ) ) = Matrix (

( ( a∗e + b∗g ) , ( a∗ f + b∗h ) ) ,
( ( c∗e + d∗g ) , ( c∗ f + d∗h ) )

)

You can raise any instance of Num to a power after defining the multiplication operator,
so Haskell will take care of the rest.

3 Quick helper function

The last element of a matrix will represent the Fibonacci number you’re looking for. So let’s
whip up a quick function to get that element.

l : : Matrix −> Integer
l ( Matrix m) = (snd . snd ) m

4 Finally, the Fibonacci Function!

In CIS194, this is the fourth version of the function, so it is named fib4. Essentially, you take
a number n and return the nth Fibonacci number by raising a 2x2 matrix to the nth power.
Note that raising the matrix to the 0th power won’t work, so we’ll use pattern-matching to
account for that special case.

f i b 4 : : Integer −> Integer
f i b 4 0 = 0
f i b 4 n = l ( f ˆn)

5 Conclusion

To conclude, let’s try it out!
What’s an insanely large Fibonacci number? Well my birthday is April 13th, 1998, so

how about we calculate the 41398th Fibonacci? That’ll take a while, right? Wrong.
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. . .

That’s right, the answer is a 8652 digit number, and was calculated in about .009 seconds.
If you want to see the answer, check out this .txt file.
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